STRATEGIC

SYSTEMS & TECHNOLOGY CORPORATION

Backbone Overview

How does the Backbone platform help the SST
development team create more with less?

Bl

Team Size vs Results

2 Devs 8 Active Application Use Cases
1 SDET (and some minor variations not listed):
1 QA « Asset Tracking - a system for inventorying and tracking physical assets

ltem Tracking - An RFID based system for tracking items

Rapid Equipment Exchange (REX) - system for managing equipment RMAs
and repairs

FLAIR Asset Tracking - asset tracking specific to the State of Florida

(continued next slide)

Team Size vs Results

2 Devs 8 Active Application Use Cases

(and some minor variations not listed):
1SDET

1QA

Wise ID - a system for checking people in and out
Metadata Creator - an internal tool I'll talk about more

Nucleus - another internal tool used to manage the tenants of use cases and
similar information.

One Touch Deployment - an internal tool for deploying the application to
Kubernetes and MongoDB

Team Size vs Results

2 Devs CI/CD - All code:

1SDET Runs through automated builds and is thoroughly tested with:

1QA . 1,876 API tests,

2,300 Ul automation tests (including device Uls and difficult automation
scenarios like physical RFID tag scanning) and

Some large number of unit tests (1,929 on just the front end Ul).

Team Size vs Results

2 Devs CIl/CD -

1 SDET « All application services are containerized and deployed to GKE (Google
Cloud Kubernetes) with the touch of one button

« The team strives for biweekly deployments, with feature flags to control
exposure of new functionality

« Blue/Green deployment environments are available and can be used as
necessary (high test coverage and feature flags usually make this
unnecessary)

Team Size vs Results

2 Devs Backbone Provides Data Replication
1 SDET and Offline Usage

1 QA « Offline support for all front ends/clients.
Real-time transaction replication across devices while online.

Conflict reconciliation and synchronization for offline usage.

Team Size vs Results

2 Devs Backbone has:

1 SDET . Front ends/clients running on responsive web, Android native (for RFID
reading mobile devices) and several RFID fixed reader devices.

1 QA . 2 Brands, each with consistent styling and design for all front-end Uls.
« Documented REST APIs for each use case.

« SOC Il compliance
+ Negligible downtime since inception of the product.

« Currently averages V100 requests per second (mostly RFID tag reads).

How?

First some context...

e

Changes in Focus and Fluctuations in
Team Size

SST focuses on software and hardware to

@ track things.
2
O

@ The focus has shifted back and forth between custom

development and off the shelf software packages. The team
E) size has fluctuated, increasing when custom development
was the focus.

The problem with custom development...

Is that you have to maintain the code. Even if you don’t
agree to maintain the software from the outset, if enough
money is offered, you will end up fulfilling a maintenance
contract.

As you continue to accumulate clients, you will continue to
accumulate maintenance contracts.

The problem with custom development...

Mo

This all leads to a nightmare where your most reliable
employees will end up maintaining a very broad range of old,
sometimes poorly selected technologies — effectively
punishing them for being reliable — or you will have difficulty
hiring new employees because they will not want to work
with the older (sometimes horrible) technologies and
codebases.

Solutions that did not work for us

Reusable cross-application components - this is a catch-all term for everything
that resembles DLLs (com, .net gac, etc..). In our experience, each new custom
implementation team will usually either avoid the use of DLLs provided by
previous implementations or will break their backward compatibility.

Code gen - The idea here is to create templates for code generation so that it
will be easy to upgrade old clients by generating new code from the latest
templates. This had the same problems as DLLs, plus the added headache of
reapplying (Or losing) modifications made post generation (or creating hooks to
modify the results of generated code).

Solutions that did not work for us

« Low/No Code - Implement each use case with a vendor tool which creates 95%
of your app. We found that we would spend the vast majority of our time
hacking the edge cases which the tool could not handle. We would often
repeat this when the next release of the vendor software broke our hacks.

- Web/Microservices - Same problems as DLLs. In our experience, each new
custom implementation team will usually either avoid the use of web services
and microservices provided by previous implementations or will break their
backward compatibility.

Remember: these are not problems we encountered with the technologies themselves so much as the reuse of the
technology artifacts over serial implementations of new custom products.

Enough context - so what DID work?

Instead of separate apps for each use case, several years
ago, we built one evergreen app (which we call Backbone)
that could be configured to implement all of our use cases.

What constraints made the most sense?

Hopefully, it is obvious that an infinitely configurable application would consume infinite
development resources by requiring infinite time to implement — so certain constraints

were necessary.

At least three types of constraints were identified:

1. Domain constraints
2. Architectural constraints
3. Technology constraints

Domain Constraints

Backbone is for use cases that allow users to perform data

E E E entry and track things.

N

Architectural Constraints

We designate a term “namespace” to describe a large category of data
(conceptually similar to a database) and designate a term “relation” to describe a
grouping of similar data that resides inside a namespace (similar to a table).

If we use certain technologies (which I’ll discuss next), then we can use those same
namespaces and relations in every tier of Backbone.

Technology Constraints

When evaluating alternatives, our primary driver was reusability of code and data schemas
across as many contexts as possible. Our developers needed to be comfortable in every part
of our application. When designing Backbone, we needed to find multipurpose technologies
which would flatten the overall learning curve.

At the time, JavaScript was the only programming language that could reasonably work in a
browser, on the server side, on devices and in our build pipeline.

Backbone was developed near the beginning of the JavaScript renaissance. The
technologies we chose: React, React Native, Node, MongoDB Atlas and Kubernetes were still
very cutting edge and risky choices. Most developers didn’t even know what Kubernetes was
when we decided to bet on it.

Atlas

eact M @d e ' / ~ 0 MongoDB. kubernetes

Technology Constraints

To enable code sharing and easy maintainability, we wanted data to look the same
in every part of the application. Working across tiers would be vastly easier if the
data (i.e. namespaces and relations) were nearly identical.

A document oriented database which stored JSON seemed like the obvious choice
and after much comparison, we chose Atlas, the MongoDB cloud offering.

An Example: Namespaces and Relations

Imagine you configure an application use case like this:

Define ‘ltem’ as a namespace,
and ‘Asset’ as a relation in that namespace,

Then define ‘Location’ as a namespace,
and ‘Room’ as a relation in that namespace.

This allows us to shape the Ul in a way which is very similar to the shape of the API
and the shape of the data.

An Example:

An Asset relation might have
a Ul that looks like this:

Asset No

3492118356
6435251169
7865000162
2415226904
5183890706
6146722855
1773714589
3049556706
0151829772
3338607024
3666906591
1960531220
9168984375
7712667470
7042794419
5674797323

i

Edit Asset

Faria LLC dba Sheffield Pharmaceuticals

INT-RoomO1

assetNo*

An Exa m ple: POST item_item v |

An Asset relation might address a duscriztion
swagger Ul that looks similar to this:

Clarification — namespace/relations
will usually have “pretty names” (i.e.
aliases) which vary between use case.

So an “item:item” namespace:relation
might have pretty names of
“ltem:Asset”.

location:location

A “location:location”
namespace:relation might have pretty
names of “Location:Room”

string($short-text)

minLength: 1
maxLength: 100

Edit for Asset ID

string($short-text)

minlLength: ©
maxLength: 100
Description

M

description:Room

title

_id*

string($short-text)
Title

string($BSON ObjectID)
maxLength: 24

minlLength: 24

pattern: ~[0-9a-f]*$
example:
12344ac4ac34d504212c0db6

db.getCollection .find

An Example:

assetNo: 1, description: 1
dimit(1

And it might have data that
looks like this:

ObjectId

ObjectId

An Example

To summarize, in our software if you:
Define ‘Item’ as a namespace,
and ‘Asset’ as a relation in that namespace,

Then define ‘Location’ as a namespace,
and ‘Room’ as a relation in that namespace.

Then you can extrapolate a Ul, an API and the shape of your data with metadata that looks
like this (see next slide).

An Example

Metadata as described in the Metadata Creator use case of Backbone.

Page | Title: ELRYSTD & Nj

Children: | gymmary Detail Layout | Title: @ Default Namespace: [[Eiili@ Default Relation: (88 & ‘
List: Table List |

Namespace: ([Relation:
Include Checkbox Column: @ Row Click Action:

a8

List Columns: | poy4 | Title: Property Name: Sortable: @ Flag row if value: § & ‘
L

Filters: &’aged | Page Size:
=

Detail Pane(s): | petail Pane | Namespace: ([Relation: FX2X# ForAction: (188 & '
Children: | Form | Title: [E¥AEE58 Namespace: [[Ci@ Relation: (X208
Form Buttons: | rom Button | Title: (&ETE) Form Action: (ZN=3l@ (optional) Subtype: @} Bution Style: XS/t RS Icon Name: @ & ‘

Do Before:

Form Button | Title: 718 Form Action: [ET1i%# (optional) Subtype: @ Button Style: X del %@ Icon Name: @ & ‘

Do Before:
—

FormElements: | gport Text | Title: Property Name: Required: § Min Length: Max Length: Default Value: l§ Validation Pattern: @ Tooltip: @ & '
Transforms:
Display Scan Button @ Display RFID Power Button @ Scan RFID @ Scan Barcode

Short Text | Title: Property Name: Required: Min Length: @) Max Length: i) Default Value: @ Validation Pattern: @ Tooltip: @ & ‘
Transforms:
Display Scan Button @ Display RFID Power Button @ Scan RFID @ Scan Barcode

Dﬁ)p Down | Title: GEY Namespace: (K@ Relation: (GRS Auto Hide: @ Tooltip: @ Properties to include in dropdown: i) Properties to include in input: ff) & ‘

Filters: LOrder By | Optional Namespace: @8 Optional Relation: [NV NCIE @ Property Name: {i) Direction:
yDispIay Unassigned Row: Placeholder) Empty Hint (IR eemie) Required: @ Display Scan Button @ Display RFID Power Button [l Scan RFID 8 Scan Barcode [

This is exactly what Backbone does

We define the shape of all our Use Cases with configuration that consumes a set

of namespaces and relations to describe characteristics of a Ul and characteristics
of the data in that Ul.

Backbone provides a set of services that can consume that metadata and
together, create an entire use case.

