
Backbone Overview
How does the Backbone platform help the SST
development team create more with less?

Team Size vs Results

2 Devs
1 SDET
1 QA

8 Active Application Use Cases
(and some minor variations not listed):

• Asset Tracking - a system for inventorying and tracking physical assets

• Item Tracking - An RFID based system for tracking items

• Rapid Equipment Exchange (REX) - system for managing equipment RMAs
and repairs

• FLAIR Asset Tracking - asset tracking specific to the State of Florida

(continued next slide)

Team Size vs Results

2 Devs
1 SDET
1 QA

8 Active Application Use Cases
(and some minor variations not listed):

• Wise ID - a system for checking people in and out

• Metadata Creator - an internal tool I’ll talk about more

• Nucleus - another internal tool used to manage the tenants of use cases and
similar information.

• One Touch Deployment - an internal tool for deploying the application to
Kubernetes and MongoDB

Team Size vs Results

2 Devs
1 SDET
1 QA

CI/CD - All code:
Runs through automated builds and is thoroughly tested with:

• 1,876 API tests,

• 2,300 UI automation tests (including device UIs and difficult automation
scenarios like physical RFID tag scanning) and

• Some large number of unit tests (1,929 on just the front end UI).

Team Size vs Results

2 Devs
1 SDET
1 QA

CI/CD -

• All application services are containerized and deployed to GKE (Google
Cloud Kubernetes) with the touch of one button

• The team strives for biweekly deployments, with feature flags to control
exposure of new functionality

• Blue/Green deployment environments are available and can be used as
necessary (high test coverage and feature flags usually make this
unnecessary)

Team Size vs Results

2 Devs
1 SDET
1 QA

Backbone Provides Data Replication
and Offline Usage

• Offline support for all front ends/clients.

• Real-time transaction replication across devices while online.

• Conflict reconciliation and synchronization for offline usage.

Team Size vs Results

2 Devs
1 SDET
1 QA

Backbone has:
• Front ends/clients running on responsive web, Android native (for RFID

reading mobile devices) and several RFID fixed reader devices.

• 2 Brands, each with consistent styling and design for all front-end UIs.
• Documented REST APIs for each use case.

• SOC II compliance

• Negligible downtime since inception of the product.

• Currently averages ~100 requests per second (mostly RFID tag reads).

How?

First some context…

Changes in Focus and Fluctuations in
Team Size

SST focuses on software and hardware to
track things.

The focus has shifted back and forth between custom
development and off the shelf software packages. The team
size has fluctuated, increasing when custom development
was the focus.

The problem with custom development…

Is that you have to maintain the code. Even if you don’t
agree to maintain the software from the outset, if enough
money is offered, you will end up fulfilling a maintenance
contract.

As you continue to accumulate clients, you will continue to
accumulate maintenance contracts.

The problem with custom development…

This all leads to a nightmare where your most reliable
employees will end up maintaining a very broad range of old,
sometimes poorly selected technologies – effectively
punishing them for being reliable – or you will have difficulty
hiring new employees because they will not want to work
with the older (sometimes horrible) technologies and
codebases.

Solutions that did not work for us
• Reusable cross-application components - this is a catch-all term for everything

that resembles DLLs (com, .net gac, etc..). In our experience, each new custom
implementation team will usually either avoid the use of DLLs provided by
previous implementations or will break their backward compatibility.

• Code gen - The idea here is to create templates for code generation so that it
will be easy to upgrade old clients by generating new code from the latest
templates. This had the same problems as DLLs, plus the added headache of
reapplying (Or losing) modifications made post generation (or creating hooks to
modify the results of generated code).

Solutions that did not work for us
• Low/No Code - Implement each use case with a vendor tool which creates 95%

of your app. We found that we would spend the vast majority of our time
hacking the edge cases which the tool could not handle. We would often
repeat this when the next release of the vendor software broke our hacks.

• Web/Microservices - Same problems as DLLs. In our experience, each new
custom implementation team will usually either avoid the use of web services
and microservices provided by previous implementations or will break their
backward compatibility.

Remember: these are not problems we encountered with the technologies themselves so much as the reuse of the
technology artifacts over serial implementations of new custom products.

Enough context - so what DID work?

Instead of separate apps for each use case, several years
ago, we built one evergreen app (which we call Backbone)
that could be configured to implement all of our use cases.

What constraints made the most sense?

Hopefully, it is obvious that an infinitely configurable application would consume infinite
development resources by requiring infinite time to implement – so certain constraints
were necessary.

At least three types of constraints were identified:

1. Domain constraints
2. Architectural constraints
3. Technology constraints

Domain Constraints

Backbone is for use cases that allow users to perform data
entry and track things.

Architectural Constraints

We designate a term “namespace” to describe a large category of data
(conceptually similar to a database) and designate a term “relation” to describe a
grouping of similar data that resides inside a namespace (similar to a table).
If we use certain technologies (which I’ll discuss next), then we can use those same
namespaces and relations in every tier of Backbone.

Technology Constraints
When evaluating alternatives, our primary driver was reusability of code and data schemas
across as many contexts as possible. Our developers needed to be comfortable in every part
of our application. When designing Backbone, we needed to find multipurpose technologies
which would flatten the overall learning curve.

At the time, JavaScript was the only programming language that could reasonably work in a
browser, on the server side, on devices and in our build pipeline.

Backbone was developed near the beginning of the JavaScript renaissance. The
technologies we chose: React, React Native, Node, MongoDB Atlas and Kubernetes were still
very cutting edge and risky choices. Most developers didn’t even know what Kubernetes was
when we decided to bet on it.

Technology Constraints
To enable code sharing and easy maintainability, we wanted data to look the same
in every part of the application. Working across tiers would be vastly easier if the
data (i.e. namespaces and relations) were nearly identical.

A document oriented database which stored JSON seemed like the obvious choice
and after much comparison, we chose Atlas, the MongoDB cloud offering.

An Example: Namespaces and Relations
Imagine you configure an application use case like this:

Define ‘Item’ as a namespace,
and ‘Asset’ as a relation in that namespace,

Then define ‘Location’ as a namespace,
and ‘Room’ as a relation in that namespace.

This allows us to shape the UI in a way which is very similar to the shape of the API
and the shape of the data.

An Example:

An Asset relation might have
a UI that looks like this:

An Example:
An Asset relation might address a
swagger UI that looks similar to this:

Clarification – namespace/relations
will usually have “pretty names” (i.e.
aliases) which vary between use case.

So an “item:item” namespace:relation
might have pretty names of
“Item:Asset”.

A “location:location”
namespace:relation might have pretty
names of “Location:Room”

An Example:

And it might have data that
looks like this:

An Example
To summarize, in our software if you:

Define ‘Item’ as a namespace,

and ‘Asset’ as a relation in that namespace,

Then define ‘Location’ as a namespace,
and ‘Room’ as a relation in that namespace.

Then you can extrapolate a UI, an API and the shape of your data with metadata that looks
like this (see next slide).

An Example

Metadata as described in the Metadata Creator use case of Backbone.

This is exactly what Backbone does
We define the shape of all our Use Cases with configuration that consumes a set
of namespaces and relations to describe characteristics of a UI and characteristics
of the data in that UI.

Backbone provides a set of services that can consume that metadata and
together, create an entire use case.

